
ADAPTIVE TESTING OF CONTROLLERS FOR AUTONOMOUS VEHICLES†

Alan C. Schultz
John J. Grefenstette
Kenneth A. De Jong

Navy Center for Applied Research in Artificial Intelligence (Code 5514),
Naval Research Laboratory, Washington, DC 20375-5000, U.S.A.

(202) 767-2684 EMAIL: schultz@aic.nrl.navy.mil

Abstract

Autonomous vehicles are likely to require sophisticated
software controllers to maintain vehicle performance in the
presence of vehicle faults. The test and evaluation of com-
plex software controllers is expected to be a challenging
task. The goal of this effort is to apply machine learning
techniques from the field of artificial intelligence to the
general problem of evaluating an intelligent controller for
an autonomous vehicle. The approach involves subjecting
a controller to an adaptively chosen set of fault scenarios
within a vehicle simulator, and searching for combinations
of faults that produce noteworthy performance by the vehi-
cle controller. The search employs a genetic algorithm.
We illustrate the approach by evaluating the performance
of a subsumption-based controller for an autonomous vehi-
cle. The preliminary evidence suggests that this approach
is an effective alternative to manual testing of sophisticated
software controllers.

1. Introduction

Future autonomous vehicles are likely to require a
sophisticated software controller to maintain vehicle per-
formance in the presence of non-mission-threatening faults.
The test and evaluation of such a software controller is
expected to be a challenging task, given both the complex-
ity of the software system and the richness of the test
environment. The goal of this effort is to apply machine
learning techniques from the field of artificial intelligence
to the general problem of evaluating a controller for an
autonomous vehicle.

The approach involves subjecting a controller to an
adaptively chosen set of fault scenarios within a vehicle
simulator, and searching for combinations of faults that
produce noteworthy performance by the vehicle controller.
The search employs a genetic algorithm, i.e., an algorithm
that simulates the dynamics of population genetics, to
evolve sets of test cases for the vehicle controller. We have
applied this approach to find both a minimal set of faults
that produces degraded vehicle performance, and a maxi-
mal set of faults that can be tolerated without significant
performance loss. We illustrate the approach by evaluating
the performance of a subsumption-based controller for an
autonomous vehicle. The preliminary evidence suggests

† Reprinted from Proc. of the 1992 Symposium on Autonomous Underwater Vehicle Technology, June 1992, Washington, DC, IEEE, pp 158-164.

that this approach offers advantages over manual testing of
sophisticated software controllers, although this technique
should supplement, not replace, other forms of software
validation.

This research is significant because it provides new
techniques for the evaluation of complex software systems,
and for the identification of classes of vehicle faults that are
most likely to impact negatively on the performance of a
proposed autonomous vehicle controller. Use of these
techniques may ultimately lead to the development of an
autonomous vehicle that is more robust than one tested
manually. The method can be applied to intelligent con-
trollers for autonomous underwater, ground or air vehicles
and the basic approach stays the same.

In the next section, we will describe the task of test-
ing intelligent controllers, and describe the representation
and evaluation of fault scenarios. In Section 3, a particular
autonomous vehicle domain is introduced along with
changes that are made to the simulator for adaptive testing.
Section 4 gives a basic introduction to genetic algorithms
and describes their application to performance testing.
Results of our initial experience with this method is given
in Section 5 and Section 6 gives a conclusion and describes
ongoing and future work in this area.

2. Testing the Performance of
an Autonomous Vehicle Controller

Given a vehicle simulation and an intelligent, auto-
nomous controller for that vehicle, what methods are avail-
able for testing the robustness of the controller? Validation
and verification do not solve the problem. The controller
may perform as specified, but the specifications may be
incorrect; that is, the vehicle may not behave as expected.
Testing all possible situations is obviously intractable due
to the complexity of the system involved. Analysis tech-
niques exist for testing the robustness of low-level controll-
ers in isolation [1], but the methods are not applicable to
testing the vehicle as a whole.

Traditional approaches to performance testing of
controllers can be labor intensive and time consuming.
Some methods require that simulated vehicle missions be

Initial Conditions Rule 1 Rule 2 • • • Rule n

Trigger 1 Trigger 2 Trigger 3 • • • Trigger m Fault Mode

Low Value High Value Fault LevelFault Type

Fig. 1. Representation of a Fault Scenario

run with instantiated faults to test the robustness of the
intelligent controller under various unanticipated condi-
tions. To do this, the simulator would be altered to allow
faults to be introduced into the vehicle simulation. Test
engineers then hypothesize about the type of failures they
anticipate to be a problem for the controller. After design-
ing by hand a fault scenario that will cause the particular
failures to occur during a simulated mission, they observe
the resulting behavior of the vehicle and then refine the
fault scenario to better exercise the autonomous vehicle
controller. This cycle is repeated until the test engineers
are confident that the vehicle’s behavior will be appropriate
in the field.

Implicitly, the test engineers are performing a search
of the space of fault scenarios looking for fault scenarios of
interest. In this paper, we will describe a technique for
automating the process of searching for interesting fault
scenarios in the space of fault scenarios. We begin by
describing the representation of a fault scenario and our
assumptions about how a fault scenario is implemented in a
vehicle simulator, and then discuss techniques for evaluat-
ing samples drawn from this search space.

2.1. Representation of Fault Scenarios

In our approach, a fault scenario is a description of
faults that can occur in a vehicle, and the conditions under
which they will occur. Furthermore, the fault scenario
might include information about the environment under
which the vehicle is operating. This section describes a
fault scenario in detail.

Figure 1 shows a representation of a fault scenario.
A fault scenario is composed of two main parts, initial con-
ditions, and the fault rules. The initial conditions give
starting conditions for the vehicle and environment in the
simulator, e.g. vehicle depth, initial speed, attitude and
position, etc. The initial conditions are read when the
simulator starts up and the associated elements of the
environment or vehicle are set accordingly. The fault rules
are the rules that map current conditions (i.e. the state of
the vehicle and environment) to fault modes to be instan-
tiated.

Each rule is composed of two parts, triggers and the
fault mode. The triggers make up the left hand side of the

rule, and represent the conditions that must be met in order
for the fault to occur. When the conditions specified by the
triggers are met, the fault mode (the right hand side of the
rule) is instantiated in the vehicle simulation.

Each of the triggers measures some aspect of the
current state of the vehicle, the environment, or the state of
other faults that might be activated at that time. Each
trigger is composed of a low value and a high value, and if
the measured quantity in the state is within the range of the
trigger, then that trigger is said to be satisfied. All triggers
in a rule must be satisfied in order for the fault to be trig-
gered.

A fault mode, or right-hand side of a fault rule, has
two parts, a fault type and a fault level. The fault type
describes the subsystem that will fail in the vehicle model.
The fault level is a parameter that describes the severity of
the failure.

To summarize, a fault scenario is used as follows: At
the start of a simulated mission, the initial conditions are
first read, and those variables are set in the simulation. At
each time step in the simulation, each rule is examined to
see if the triggers are satisfied, and if they are, then that
rule’s fault mode is instantiated with the given amount of
degradation.

2.2. Evaluation of a Fault Scenario

When test engineers search the space of fault
scenarios, they apply an evaluation criterion to provide a
measurement of utility for fault scenarios in the search
space. This evaluation criterion guides them in their search
for scenarios of interest. To automate the search process,
we will need to explicitly define an evaluation function that
can provide the utility or fitness measure for each scenario
examined. This may be difficult, because evaluation cri-
teria are often based on informal judgements. In this sec-
tion, we will consider various approaches to defining
evaluation functions.

One approach is to define an evaluation function that
would measure the difference between the the actual per-
formance of the autonomous controller on a given fault
scenario against some form of ideal response. The ideal
response could be approximated based on knowledge of the

causal assumption behind the fault scenario (i.e., a certain
sensor has failed, and should be recalibrated or ignored), or
it could be based on the actions of an expert controller, or it
could simply be to return to nominal performance of the
mission plan in the least amount of time. The computation
of the ideal response might rely on information that is not
available to the controller under test. This approach has the
advantage of yielding a more completely automated way of
identifying problem areas for the autonomous controller,
but it also requires a substantial effort to design software to
compute an ideal response.

A second approach is to measure fitness on the basis
of likelihood and the severity of the fault conditions. The
goal is to give the highest fitness to the most likely set of
faults that cause the autonomous controller to degrade to a
specified level. This approach is useful when probability
estimates of the various fault modes are available to be
used in constructing the evaluation function. Unfor-
tunately, many of the fault modes that would be encoun-
tered on long endurance autonomous vehicles are of low
probability and have the same order of magnitude. There-
fore, this approach would not work in practice.

A third approach is to define an evaluation function
that rewards fault scenarios that occur on the boundary of
the performance space of the autonomous controller. That
is, a set of fault rules would receive high fitness rating if it
causes the controller to degrade sufficiently, but some
minor variation does not. Such a fitness function would
facilitate the identification of "hot spots" in the perfor-
mance space of the autonomous controller. The computa-
tion of such a fitness function would require the evaluation
of several scenarios for each fault specification, and
depending on the computation cost involved in each
evaluation of the controller, which requires a complete
simulation of a mission, this approach may not be feasible.

A fourth approach to constructing effective evalua-
tion functions is to define and search for scenarios that are
"interesting." There are several possible ways to define
"interesting" in the context of an intelligent controller, each
giving a separate evaluation function. One interesting class
of scenarios are those in which minimal fault activity
causes a mission failure or vehicle loss. The dual of that
class is the class of scenarios in which maximal fault
activity still permits a high degree of mission success.

Using this approach, we have implemented two
evaluation functions for the automated testbed, described in
detail below. This approach appears to show promise in
helping to qualitatively examine the overall performance
profile on an autonomous vehicle controller. Before exa-
mining the automation of the testing process, we will
describe the simulation vehicle and autonomous controller
used in the initial experiments.

3. Description of the Autonomous Vehicle Domain

Although the end goal of this work is to evaluate the
robustness of an autonomous underwater vehicle (AUV), the
full-scale AUV was not available in the early stages of

developing this technique. Consequently, our initial
development focused on experiments with a controller for
an autonomous air vehicle, but the general method can be
applied to autonomous underwater vehicles as well. In
these experiments, the domain involved a medium-fidelity,
three-dimensional simulation of a jet aircraft under the
control of an intelligent controller that flies to and lands on
an aircraft carrier. The vehicle simulation is called
AUTOACE. The simulation includes the ability to control
environmental conditions, in particular, constant wind and
wind gusts.

The autonomous controller, which is responsible for
flying the aircraft and performing the landing on the carrier
deck, was designed using a subsumption architecture
approach [2]. The controller is composed of individual
behaviors, operating at different levels of abstraction, that
communicate among themselves and together allow the air-
craft to fly and to land. Top level behaviors include fly-
craft and land-craft. At a lower level, behaviors include
fly-heading and fly-altitude. The lowest level behaviors
include hold-pitch and adjust-roll. After the initial design,
optimization techniques were used to improve the con-
troller such that it was very successful in flying and landing
the aircraft, even in conditions of constant wind and wind
gusts.

The AUTOACE simulator was modified to allow vari-
ous faults to be modeled in the system; these will be dis-
cussed below. In addition, the simulator was modified to
read a file at startup that contains a fault scenario. The
simulator first reads the initial conditions and configures
the starting state, and then reads the fault rules for use dur-
ing the simulation. As described earlier, each cycle of the
simulation, the rules are tested to see if a fault should be
instantiated into the system.

3.1. Modeling Faults in the vehicle

Three classes of faults were introduced into the
vehicle simulation, control faults, sensor faults, and model
faults. Here, we describe the classes of faults, and describe
the actual faults in each class.

3.1.1. Control Faults: One class of failure occurs
when a controller commands an action by an actuator but
the actuator fails to perform the commanded action. These
faults are called control faults. The following control faults
have been modeled in this simulator:

Elevators: Here, the elevators are com-
manded to a given angle, but fail to arrive at
that angle.

Rudders: A rudder failure results when the
rudder does not meet the commanded angle.

Ailerons: If the ailerons do not meet their
commanded angle, an aileron fault occurs.

Flaps: The flaps can normally be set between
0 and 40 degrees. If the actual position of the
flaps differs from the commanded setting,
then a flap fault has occurred.

For the control faults, the fault level is given as a
percentage of the total range for that actuator. Therefore, a
fault level of 10% for the flaps, which have a total range of
0 to 40 degrees, is 4 degrees positive error, while a -10%
fault level would yield an actuator set 4 degrees lower than
expected.

3.1.2. Sensor Faults: Sensor faults represent failures
of sensors or detectors of the vehicle. In these cases, the
controller tries to read a sensor, and receives erroneous
information either because of noise or sensor failure. The
following sensor faults have been modeled in this vehicle
simulator:

Pitch: This represents a failure in the sensor
that returns the current pitch of the vehicle in
degrees from the horizon. A pitch sensor
fault occurs if the sensor returns an inaccurate
value.

Yaw: Incorrect sensing of the vehicle’s yaw is
reflected in this fault.

Roll: This represents a failure of the roll sen-
sor.

For these sensor faults, fault level is expressed as a
percentage of plus or minus 180 degrees since that is the
total range that these sensors might return. A sensor fault
degradation of -10 percent in the pitch sensor means that
the pitch sensor returns a value that is 18 degrees below the
actual value.

3.1.3. Model Faults: Model faults are failures of the
vehicle that are not directly related to sensors or effectors,
and usually involve physical aspects of the vehicle. For
example, in an autonomous underwater vehicle instantiat-
ing a leak is a model fault. There is one model fault in this
vehicle simulation:

Drag: This fault represents a change in the
parasitic drag of the vehicle, as if a structure
of the vehicle was damaged resulting in
increased drag.

In general, the amount of fault level for each type
will depend on the fault being modeled. In the case of
drag, degradation is expressed as a percentage in increase
in drag from none to an amount that is reasonable in this
domain.

3.1.4. Persistence of Faults: In addition to these
three classes of faults, faults can also be identified as per-
sistent or non-persistent. Persistent faults, once instan-
tiated, do not cease, while non-persistent faults must be
reinstantiated at each time step in order to continue. For
example, actuators and sensors tend to have intermittent
failures, and can return to a fault-free state, and therefore
would be modeled as non-persistent. On the other hand,
increased drag due to damage of the vehicle’s body, cannot
be undone and is modeled as a persistent fault.

3.2. Trigger Conditions for the Faults

In our AUTOACE experiments, there are 21 triggers
(conditions) for each fault rule. Again, each trigger
specifies a range that the actual value must fall within in
order for the trigger to be true, and all 21 triggers must be
true for the rule to instantiate the fault. Some of the
triggers measure the state of the aircraft and others examine
others fault conditions. The triggers are:

1-3) Components of the velocity vector;

4-6) Absolute position in space;

7-9) Attitude (pitch, yaw and roll);

10) Current flap setting;

11) Current thrust setting;

12) Elapsed time since mission began;

13) Time since last fault was instantiated;

14-21) Current state of each of the faults:
currently active, currently not active, or not
important (i.e. don’t care).

3.3 Setting Initial Conditions

The first group of items in the fault scenario file are
the initial conditions, which configure the starting state of
the simulator. The range of initial conditions was restricted
so that no setting of these conditions can by themselves
cause the vehicle to fail. All aircraft failures come from the
instantiation of vehicle faults. When the simulation starts,
the aircraft begins its mission approximately two nautical
miles out from the carrier and then proceeds to land. The
initial conditions control environmental conditions and the
exact starting configuration of the aircraft:

Wind Speed: The constant wind speed in
knots;

Wind Direction: The direction of the wind in
degrees;

Altitude: The initial altitude of the aircraft in
feet;

Distance: The initial distance of the aircraft
from the carrier at the start of the simulation
in nautical miles;

Horizontal Offset: How well the aircraft is
lined up with the carrier initially. Zero
means they are perfectly lined up;

Velocity: The initial forward velocity of the
aircraft in feet per second.

Figure 2 shows part of a fault scenario file for the
AUTOACE system. Now that we have described the vehicle
simulation and the details of the fault scenario file, we will
describe the use of genetic algorithms to automate the
search for interesting fault scenarios.

**** Initial Conditions **********************
set wind speed = 8
set wind direction = 58
set altitude = 1460
set distance = 2.462
set horizontal offset = 36
set velocity = 121

**** Rule 1 **********************************
IF -63.00 <= velocity[x] <= 64.00 AND

-56.00 <= velocity[y] <= -28.00 AND
-254.00 <= velocity[z] <= -224.00 AND

-16220 <= position[x] <= -860 AND
13 <= position[y] <= 832 AND

2040 <= position[z] <= 2040 AND
-325 <= pitch <= 635 AND

-1370 <= yaw <= -100 AND
-900 <= roll <= -857 AND

7 <= elapsed time <= 2016 AND
0 <= last fault <= 2044 AND
0 <= thrust <= 72 AND

16 <= flaps <= 40 AND
M_drag = NA AND

C_flaps = NA AND
C_rudder = CLEAR AND

S_azimuth = NA AND
C_elevator = NA AND

S_elevation = NA AND
C_rollers = SET AND

S_roll = NA

THEN set fault type = S_roll
set fault value = -0.232

**** Rule 2 **********************************
IF . . .

Fig. 2. Part of a Fault Scenario File.

4. Genetic Algorithms

We wish to automate the process of creating and
evaluating fault scenarios. To do this, we will use a
machine learning technique to perform the search for fault
scenarios. The search will be driven by one of the evalua-
tion functions discussed in Section 2.2. To perform this
search we will use a class of learning systems called genetic
algorithms (GAs). A detailed account of GAs is available in
[3,4,5]. In brief, GAs are motivated by standard models of
heredity and evolution in the field of population genetics,
and embody abstractions of the mechanisms of adaptation
present in natural systems. By extracting these processes
from the specific context of genetics, the algorithms are
made applicable to a wide range of search problems.

A GA simulates the dynamics of population genetics
by maintaining a knowledge base of fault scenarios that
evolves over time in response to the observed performance
in the vehicle simulation. The fitness of a structure is cap-
tured by the evaluation function as described previously.
The search proceeds by repeatedly selecting fault scenarios
from the current population based on fitness. That is, high
performing structures may be chosen several times for
replication and poorly performing structures may not be
chosen at all. Next, plausible new fault scenarios
(offspring) are constructed by applying idealized genetic
search operators to the selected structures. For example,

crossover exchanges pieces of the representation of fault
scenarios to create new offspring. Mutation makes small
random changes to fault scenarios. The new fault scenarios
are then evaluated in the next iteration (generation) of the
algorithm.

GAs have been applied successfully in a variety of
problem domains, including image processing [6], com-
binatorial optimization [7], gas pipeline control systems
[8], and machine learning [9,10,11], including learning
behaviors for autonomous underwater vehicles [12]. We
now discuss the application of GAs to automating the pro-
cess of evaluating controllers for autonomous vehicles.

4.1. Applying the Genetic Algorithm

Figure 3 gives a diagrammatic view of how GAs can
be applied to the problem of testing the performance of an
intelligent controller. Given a vehicle simulator, and an
intelligent controller for that vehicle that is to be tested, the
GA replaces the manual selection of new fault scenarios and
automatically runs many scenarios searching for interesting
ones.

When applying GAs to particular problems, it is often
necessary to tailor the algorithm to the chosen representa-
tion language, and to develop new genetic operators that
take advantage of available domain knowledge. Using the
fault scenario representation discussed previously, each
population member represents a single fault scenario, and
has the form:

s s ... s r r ... r

where each "s" represents a simulation parameter that
specifies an initial condition of a scenario, i.e. all s
comprise the initial conditions. Each "r" represents a fault
rule of the form:

trigger & trigger & ... & trigger => fault mode

where each trigger specifies a range of values for a trigger
variable as described earlier. The "fault mode" contains
both a fault type and a fault level that indicates the severity
of the fault.

vehicle
simulator

genetic
algorithm

fault
scenario

file

population of
fault scenarios

evaluation of
intelligent controller
with fault scenario

intelligent
controller

Fig. 3. Using a GA to Test an Intelligent Controller

GAs are often used to find a single optimal point in
the search space. For this project, we are more interested in
collecting a large number of interesting fault scenarios than
in finding a single most-interesting scenario. In the initial
experiments, this was accomplished by stopping the genetic
algorithm when convergence reached a predefined level.
This means that the final population still represented a
widely diverse set of fault scenarios. Another idea that we
tested was to have the system record the best individuals
from each generation. Lastly, it is possible to keep a record
of ALL scenarios tested, and then apply a post-processor to
search for diverse, interesting scenarios.

Another important consideration involved the gen-
eration of the initial population of fault scenarios. In order
to have enough faults active initially, it was necessary to
force a large degree of generality in the triggers of the fault
rules in the initial population. This was accomplished by
the introduction of a parameter that adjusted the percentage
of triggers that were initially set to the full range for that
trigger. As a result of tuning this parameter, we were able
to ensure that all the initial scenarios had at least some fault
activity. This gave the genetic algorithm sufficient infor-
mation to construct more interesting scenarios over the
course of the run.

4.2 Evaluation Function

The role of the evaluation, or fitness, function in a
genetic algorithm is to provide a measurement of utility for
arbitrary points in the search space defined by the represen-
tation language. For these experiments, we adapted the
fourth approach in Section 2.2: define and search for
scenarios that are interesting.

We have defined an evaluation function that gives
high ratings to scenarios that induce interesting behaviors
by the vehicle controller. Maximizing the evaluation func-
tion searches for failures of the aircraft controller in the
face of minimal vehicle failures. This searches for interest-
ing weaknesses of the aircraft controller. Minimizing the
function searches for successes of the aircraft controller in
light of significant vehicle failures. This allows us to
characterize the robustness of the controller with respect to
some general classes of faults.

We begin by defining fault activity. First, the abso-
lute value of the fault levels active during a given time step
are normalized so that they are between 1 and 10 and then
the product is taken:

current fault activity =
active rules
Π ((| fault level | × 9.0) + 1.0)

Then we take the average fault activity over the entire mis-
sion:

fault activity =
time

time
Σ current fault activity

The fault activity measures the level of faults that are intro-
duced over the entire length of a mission.

The simulator also returns a score based on the qual-
ity of the landing using factors such as the distance from
center line, which cable the aircrafts tail hook caught, the
roll angle at touchdown, velocity of descent, etc., and
returns score as follows:

score =
�
�
� 3→10

2
1

if
if
if

SAFE LANDING
ABORT
CRASH LANDING

Therefore score ranges between 1, which indicates a crash,
and 10, which indicates a perfect landing. We now com-
bine the fault activity and the score as follows:

eval =
fault activity × score

1__________________

With no faults occurring and a crash landing (actually, this
is impossible), then eval returns 1, the maximum value pos-
sible. With maximal fault levels throughout the mission
and a perfect landing, eval returns 0.01, the minimal value
possible.

In order to find the first class of interesting
scenarios, those where minimal fault activity results in
failure of the intelligent controller, we use the GA to max-
imize eval. To find the second class of scenarios, those
where despite maximal fault activity, the aircraft still
manages to land well, we use the GA to minimize eval.

5. Results of Experiments

In all experiments, we used a population size of 100,
and ran the GA for 100 generations resulting in 10,000 total
evaluations. We first maximized the evaluation function to
find several minimum-fault, maximum-failure scenarios on
the AUTOACE testbed. Figure 4 shows a learning curve for
a representative experiment. In this graph, the X axis
represents the number of trials (evaluations), and the Y axis
represents the average value returned by the evaluation
function for all fault scenarios in that generation. We can
see that the GA quickly homes in on scenarios with high
fitness, that is scenarios where minimal fault activity leads
to controller failure.

By examining the scenarios identified as interesting
by the GA, we were able to draw the following general con-
clusions about the intelligent controller:

• Roll control was most critical as you start to
touchdown.

• Sensor errors were much harder to recover
from than control errors.

• Even slight increases of drag caused the
controller to behave poorly.

Next, we minimized the evaluation function to
search for successes of the intelligent controller in light of
significant vehicle failures. In this case, we have been able
to characterize the robustness of the controller with respect
to some general classes of faults.

AVERAGE
PERFORMANCE

GENERATIONS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Fig. 4. Learning Curve for Maximization of Evaluation Function.

• Again the GA found that the controller could
recover from control faults, but that sensor
faults were much harder to handle.

• Recovery from faults that effected the pitch
of the aircraft were easier than recovery from
faults effecting the roll of the craft. This
agrees with the earlier observation.

• Finally, the GA identified situations in which
it was possible for some faults to "cancel" out
the effects of other faults (e.g. positive sensor
errors may offset negative control errors).

In more of a qualitative affirmation of the method, the ori-
ginal designer of the AUTOACE intelligent controller was
shown some of the interesting scenarios generated by the
GA, and acknowledges that they gave insight into areas of
the intelligent controller that could be improved. In partic-
ular, the scenarios as a group tend to indicate classes of
weaknesses, as opposed to only highlighting single
weaknesses. This allows the controller designers to
improve the robustness of the controller over a class as
opposed to only patching very specific instances of prob-
lems.

6. General Conclusions and Future Work

The experiments to date with the AUTOACE testbed
support the hypothesis that the overall performance of an
autonomous controller can be qualitatively examined by
the use of GAs. The initial approach to fitness, based on the
extent to which fault activity influences mission perfor-
mance, appears to be promising. Other approaches to

evaluating scenarios may be feasible with other vehicles.

We are currently examining other evaluation func-
tions that will attempt to find other interesting scenarios of
interest to the vehicle controller designers. We will also
start applying these techniques to autonomous underwater
vehicle controllers in the near future.

Along another front, we are looking at changes to
the GA to improve its search for fault scenarios. One area
that we are currently examining is the use of sharing func-
tions to help maintain diversity in the population [13].
These techniques force the GA to cover some number of the
better solutions with a percentage of the population instead
of converging to a single maximum, in essence making the
population share the payoff. This is important in situations
where the simulation time becomes excessively long.

We have begun to explore the use of heuristic muta-
tion operators, such as generalization and specialization, to
aid in finding good solutions quickly. These new operators
will use information recorded during fault scenarios to
trigger generalization and specialization of the fault rules.
This is expected to result in finding good solutions more
quickly, allowing us to generate more good scenarios.

References

[1] B. Appleby, W. Bonnice, and N. Bedrossian, Robustness
analysis methods for underwater vehicle control sys-
tems. Proc. of the Symp. on Autonomous Underwa-
ter Vehicle Technology, Washington, DC, June 1990,
IEEE, pp. 74-80.

[2] R. L. Hartley and F. J. Pipitone, Experiments with the
Subsumption Architecture. Proceedings of the 1991
IEEE International Conference on Robotics and
Automation, Sacramento, CA, April 1991, pp.
1652-1659.

[3] J. H. Holland, Adaptation in Natural and Artificial Sys-
tems. Univ. Michigan Press, Ann Arbor, 1975.

[4] K. A. De Jong, Adaptive system design: a genetic
approach. IEEE Trans. Syst., Man, and Cyber.,
SMC-10(9), pp. 566-574, 1980.

[5] J. J. Grefenstette, Optimization of control parameters
for genetic algorithms. IEEE Trans. Systems, Man,
and Cybernetics, SMC-16(1), pp. 122-128, 1986.

[6] K. A. De Jong, Analysis of the behavior of a class of
genetic adaptive systems. Ph. D. Thesis, Dept. Com-
puter and Communication Sciences, Univ. of Michi-
gan, 1975.

[7] J. M. Fitzpatrick and J. J. Grefenstette, Genetic algo-
rithms in noisy environments. Machine Learning 3:,
101-120, 1988.

[8] D. E. Goldberg, Dynamic system control using rule
learning and genetic algorithms. Proc. 9th Intl. J.
Conf. Artif. Intel., pp. 588-592, 1985.

[9] L. B. Booker, Intelligent behavior as as adaptation to
the task environment. Ph. D. Thesis, Dept. Com-
puter and Communication Sciences, Univ. of Michi-
gan, 1982.

[10] S. F. Smith, Flexible learning of problem solving
heuristics through adaptive search. Proc. 8th Intl. J.
Conf. Artif. Intel., Aug. 1983.

[11] J. J. Grefenstette, Credit assignment in rule discovery
systems based on genetic algorithms. Machine
Learning 3:, pp. 225-245, 1988.

[12] Alan C. Schultz, Using a genetic algorithm to learn
strategies for collision avoidance and local naviga-
tion. Proc. 7th Intl Symposium on Unmanned
Untethered Submersible Technology, Univ. of New
Hampshire Marine Systems Engineering Laboratory,
September 23-25, 1991, pp. 213-215.

[13] K. Deb and D. E. Goldberg, An investigation of niche
and species formation in genetic function optimiza-
tion. Proc. Third Intl. Conf. on Genetic Algorithms,
George Mason University, Fairfax, VA, June 4-7,
1989, pp 42-50.

